Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Chemical Education ; 2022.
Article in English | Web of Science | ID: covidwho-2004741

ABSTRACT

The switch to online instruction during the COVID-19 pandemic forced educators to adapt hands-on environmental engineering experiments to a remote curriculum previously conducted in a laboratory using expensive analytical instruments (> $2000 per device). Here, we describe how we developed a low-cost (<$200) aerosol sensor platform as a successful solution for supporting remote laboratories on air quality for environmental engineering courses in Spring 2021, and continued for in-person classes in Spring 2022. This sensor platform, called HazeL (Haze Laser Sensor), consists of an externally mounted aerosol sensor, a GPS receiver, and temperature and pressure sensors coupled to an Arduino MKR WiFi 1010 microcontroller connected via a Grove system. Using a project-based learning approach and implementing the scientific method, students worked asynchronously to design experiments, collect aerosol measurements, and analyze and visualize data using the R programming language. Students generated hypotheses regarding factors affecting air pollution, measured >= 0.3 mu m particles in different locations, tested differences between samples, and rejected the null hypothesis if appropriate. HazeL was also used for projects on data processing and statistical inference in an upper-level computational course. We present an instructional guide on manufacturing the HazeL platform and using it as a teaching tool for enhancing student experiential learning, participation, and engagement.

SELECTION OF CITATIONS
SEARCH DETAIL